An agent-based algorithm exploiting multiple local dissimilarities for clusters mining and knowledge discovery
نویسندگان
چکیده
We propose a multi-agent algorithm able to automatically discover relevant regularities in a given dataset, determining at the same time the set of configurations of the adopted parametric dissimilarity measure yielding compact and separated clusters. Each agent operates independently by performing a Markovian random walk on a suitable weighted graph representation of the input dataset. Such a weighted graph representation is induced by the specific parameter configuration of the dissimilarity measure adopted by the agent, which searches and takes decisions autonomously for one cluster at a time. Results show that the algorithm is able to discover parameter configurations Corresponding Author Email addresses: [email protected] (Filippo Maria Bianchi), [email protected] (Enrico Maiorino), [email protected] (Lorenzo Livi), [email protected] (Antonello Rizzi), [email protected] (Alireza Sadeghian) URL: https://sites.google.com/site/lorenzlivi/ (Lorenzo Livi), http://infocom.uniroma1.it/~rizzi/ (Antonello Rizzi), http://www.scs.ryerson.ca/~asadeghi/ (Alireza Sadeghian) Preprint submitted to Information Sciences September 18, 2014 that yield a consistent and interpretable collection of clusters. Moreover, we demonstrate that our algorithm shows comparable performances with other similar state-of-the-art algorithms when facing specific clustering problems.
منابع مشابه
بررسی مشکلات الگوریتم خوشه بندی DBSCAN و مروری بر بهبودهای ارائهشده برای آن
Clustering is an important knowledge discovery technique in the database. Density-based clustering algorithms are one of the main methods for clustering in data mining. These algorithms have some special features including being independent from the shape of the clusters, highly understandable and ease of use. DBSCAN is a base algorithm for density-based clustering algorithms. DBSCAN is able to...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملCustomer behavior mining based on RFM model to improve the customer relationship management
Companies’ managers are very enthusiastic to extract the hidden and valuable knowledge from their organization data. Data mining is a new and well-known technique, which can be implemented on customers data and discover the hidden knowledge and information from customers' behaviors. Organizations use data mining to improve their customer relationship management processes. In this paper R, F, an...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 21 شماره
صفحات -
تاریخ انتشار 2017